Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(9): e0239952, 2020.
Article in English | MEDLINE | ID: mdl-32991625

ABSTRACT

Signal transducer and activator of transcription 1 (STAT1) is known to be an important player in inflammatory responses. STAT1 as a transcription factor regulates the expression of multiple proinflammatory genes. Inflammatory response is one of the common effects of ototoxicity. Our group reported that hair cells of STAT1 knockout (STAT1-KO) mice are less sensitive to ototoxic agents in-vitro. The effect of inflammatory responses in STAT1-KO mice has primarily been studied challenging them with several pathogens and analyzing different organs of those mice. However, the effect of STAT1 ablation in the mouse inner ear has not been reported. Therefore, we evaluated the cochlear function of wild type and STAT1-KO mice via auditory brain stem response (ABR) and performed histopathologic analysis of their temporal bones. We found ABR responses were affected in STAT1-KO mice with cases of bilateral and unilateral hearing impairment. Histopathologic examination of the middle and inner ears showed bilateral and unilateral otitis media. Otitis media was characterized by effusion of middle and inner ear that varied between the mice in volume and inflammatory cell content. In addition, the thickness of the middle ear mucosae in STAT1-KO mice were more pronounced than those in wild type mice. The degree of middle and inner ear inflammation correlated with ABR threshold elevation in STAT1-KO mice. It appears that a number of mice with inflammation underwent spontaneous resolution. The ABR thresholds were variable and showed a tendency to increase in homozygous and heterozygous STAT1-KO mice. These findings suggest that STAT1 ablation confers an increased susceptibility to otitis media leading to hearing impairment. Thus, the study supports the new role of STAT1 as otitis media predisposition gene.


Subject(s)
Otitis Media/genetics , STAT1 Transcription Factor/genetics , Animals , Cochlea/pathology , Cochlea/physiopathology , Ear, Middle/pathology , Ear, Middle/physiopathology , Evoked Potentials, Auditory, Brain Stem , Mice , Mice, Inbred C57BL , STAT1 Transcription Factor/deficiency
2.
Cell Tissue Res ; 378(2): 163-173, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31338584

ABSTRACT

An exceptionally low calcium (Ca2+) concentration in the inner ear endolymph ([Ca2+]endolymph) is crucial for proper auditory and vestibular function. The endolymphatic sac (ES) is believed to critically contribute to the maintenance of this low [Ca2+]endolymph. Here, we investigated the immunohistochemical localization of proteins that are presumably involved in the sensing and transport of extracellular Ca2+ in the murine ES epithelium. Light microscopic and fluorescence immunolabeling in paraffin-embedded murine ES tissue sections (male C57BL/6 mice, 6-8 weeks old) demonstrated the presence of the calcium-sensing receptor CaSR, transient receptor potential cation channel subtypes TRPV5 and TRPV6, sarco/endoplasmic reticulum Ca2+-ATPases SERCA1 and SERCA2, Na+/Ca2+ exchanger NCX2, and plasma membrane Ca2+ ATPases PMCA1 and PMCA4 in ES epithelial cells. These proteins exhibited (i) membranous (apical or basolateral) or cytoplasmic localization patterns, (ii) a proximal-to-distal labeling gradient within the ES, and (iii) different distribution patterns among ES epithelial cell types (mitochondria-rich cells (MRCs) and ribosome-rich cells (RRCs)). Notably, in the inner ear membranous labyrinth, CaSR was exclusively localized in MRCs, suggesting a unique role of the ES epithelium in CaSR-mediated sensing and control of [Ca2+]endolymph. Structural loss of the distal ES, which is consistently observed in Meniere's disease, may therefore critically disturb [Ca2+]endolymph and contribute to the pathogenesis of Meniere's disease.


Subject(s)
Calcium/metabolism , Carrier Proteins/metabolism , Endolymph/metabolism , Endolymphatic Sac/metabolism , Epithelium/metabolism , Animals , Male , Meniere Disease/metabolism , Mice , Mice, Inbred C57BL
3.
Front Neurol ; 10: 303, 2019.
Article in English | MEDLINE | ID: mdl-31024416

ABSTRACT

Two histopathological subtypes of Meniere's disease (MD) were recently described in a human post-mortem pathology study. The first subtype demonstrated a degenerating distal endolymphatic sac (ES) in the affected inner ear (subtype MD-dg); the second subtype (MD-hp) demonstrated an ES that was developmentally hypoplastic. The two subtypes were associated with different clinical disease features (phenotypes), suggesting that distinct endotype-phenotype patterns exist among MD patients. Therefore, clinical endotyping based on ES pathology may reveal clinically meaningful MD patient subgroups. Here, we retrospectively determined the ES pathologies of clinical MD patients (n = 72) who underwent intravenous delayed gadolinium-enhanced inner ear magnetic resonance imaging using previously established indirect radiographic markers for both ES pathologies. Phenotypic subgroup differences were evidenced; for example, the MD-dg group presented a higher average of vertigo attacks (ratio of vertigo patterns daily/weekly/other vs. monthly, MD-dg: 6.87: 1; MD-hp: 1.43: 1; p = 0.048) and more severely reduced vestibular function upon caloric testing (average caloric asymmetry ratio, MD-dg: 30.2% ± 30.4%; MD-hp: 13.5% ± 15.2%; p = 0.009), while the MD-hp group presented a predominantly male sex ratio (MD-hp: 0.06:1 [f/m]; MD-dg: 1.2:1 [f/m]; p = 0.0004), higher frequencies of bilateral clinical affection (MD-hp: 29.4%; MD-dg: 5.5%; p = 0.015), a positive family history for hearing loss/vertigo/MD (MD-hp: 41.2%; MD-dg: 15.7%; p = 0.028), and radiographic signs of concomitant temporal bone abnormalities, i.e., semicircular canal dehiscence (MD-hp: 29.4%; MD-dg: 3.6%; p = 0.007). In conclusion, this new endotyping approach may potentially improve the diagnosis, prognosis and clinical decision-making for individual MD patients.

4.
Neurobiol Aging ; 36(12): 3278-3287, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26364734

ABSTRACT

So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice.


Subject(s)
Erythropoietin/genetics , Erythropoietin/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression/genetics , Presbycusis/genetics , Presbycusis/prevention & control , Animals , Evoked Potentials, Auditory/physiology , Hair Cells, Auditory/pathology , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration , Neuroprotective Agents , Presbycusis/pathology , Spiral Ganglion/cytology , Spiral Ganglion/pathology
5.
Audiol Neurootol ; 20(1): 51-61, 2015.
Article in English | MEDLINE | ID: mdl-25428170

ABSTRACT

Activin, a member of the TGF-F superfamily, was found to play an important role in the development, repair and apoptosis of different tissues and organs. Accordingly, activin signaling is involved in the development of the cochlea. Activin binds to its receptor ActRII, then dimerizes with ActRI and induces a signaling pathway resulting in gene expression. A study reported a case of fibrodysplasia ossificans progressiva with an unusual mutation in the ActRI gene leading to sensorineural hearing loss. This draws attention to the role of activin and its receptors in the developed cochlea. To date, only the expression of ActRII is known in the adult mammalian cochlea. In this study, we present for the first time the presence of activin A and ActRIB in the adult cochlea. Transgenic mice with postnatal dominant-negative ActRIB expression causing disruption of activin signaling in vivo were used for assessing cochlear morphology and hearing ability through the auditory brainstem response (ABR) threshold. Nonfunctioning ActRIB did not affect the ABR thresholds and did not alter the microscopic anatomy of the cochlea. We conclude, therefore, that activin signaling is not necessary for hearing in adult mice under physiological conditions but may be important during and after damaging events in the inner ear.


Subject(s)
Activin Receptors/metabolism , Activins/metabolism , Cochlea/metabolism , Hearing/physiology , Signal Transduction/genetics , Activin Receptors/genetics , Activins/genetics , Animals , Evoked Potentials, Auditory, Brain Stem/genetics , Mice , Mice, Transgenic
6.
Cell Mol Life Sci ; 66(22): 3595-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19763398

ABSTRACT

It has recently been shown that the oxygen-regulated factors erythropoietin (Epo) and vascular endothelial growth factor (VEGF) confer protection on different cells, including neuronal-derived ones. The receptors for Epo and VEGF are widely expressed in different organs. Since mammalian auditory hair cells can irreversibly be damaged by different agents, we aimed to identify otoprotective compounds. We focused on the role of Epo and VEGF in the inner ear and review the recent studies. Epo and its receptor are expressed in the inner ear. In vitro experiments on auditory hair cells showed a protective effect of Epo in ischemia- and gentamicin-induced hair cell damage. In contrast, an in vivo study using an animal model of noise-induced hearing loss showed a negative effect of Epo. Also VEGF and its receptors are expressed in the inner ear. Changes in the expression of VEGF or its receptors have been found in the cochlea after noise exposure, transcranial vibration and diabetic or aged animals. Until now, there are no studies about a direct effect of VEGF on auditory hair cells in vitro or in vivo. We could exclude a protective effect of VEGF on gentamicin-induced auditory hair cell damage in vitro. Thus, we conclude that Epo but not VEGF has a protective effect on auditory hair cell damage at least in vitro.


Subject(s)
Cytoprotection/drug effects , Ear, Inner/drug effects , Erythropoietin/pharmacology , Hair Cells, Auditory, Inner/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Animals , Ear, Inner/physiology , Hair Cells, Auditory, Inner/physiology , Humans , Neuroprotective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...